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Highlights  Abstract  

▪ The SSRe is proposed to determine the 

probability of the coating process working 

properly. 

▪ Based on the Burr III distribution, the 

IAPrgCS-II is applied as a novel censoring 

scheme. 

▪ The SSRe model parameters are attained using 

frequentist and Bayesian aspects. 

▪ The BEs perform relatively better than ML 

estimates in the reliability model environment. 

▪ The results show us that the SSRe can be used 

to amend the quality of coatings. 

 The stress-strength reliability (SSRe) model is widely investigated in 

reliability engineering to determine the probability of the strength 

component overcomes the stress imposed on it. In this paper, we 

studied the estimation of SSRe model based on the Burr III distribution 

under the improved adaptive progressive type-II censoring scheme 

(IAPrgCS-II). Estimation methods of the SSRe parameters are 

developed using frequentist and Bayesian approaches. The point and 

interval estimations using the maximum likelihood  are considered to 

estimate the parameters. Two approximations are applied to compute 

the Bayes estimates. A simulation study is conducted for the 

comparison of the methods of estimation. Also, parallel to the 

development of reliability studies, it is necessary to study its 

application in different sciences such as engineering. Therefore, the 

droplet splashing (DrS) data under two wettabilities are proposed as an 

application of the considered SSRe model and methods. The results 

show us that the reliability model can be used to amend the quality of 

coatings. 

  Keywords 

This is an open access article under the CC BY license 

(https://creativecommons.org/licenses/by/4.0/)  

Bayesian and Frequentist Estimators; Burr III; Improved Adaptive 

Progressive; Stress-Strength Reliability. 

1. Introduction 

The reliability model has many applications in engineering 

studies, such as the strength of pressure vessels, fatigue failure 

of chemical equipment structures, and computer ring network 

systems. The SSRe model is defined as the probability of the 

strength component (X) overcomes the stress (Y) imposed on it, 

namely 𝑆𝑆𝑅𝑒 = 𝑃(𝑋 > 𝑌). This reliability system is 

introduced by Church and Harris [9], and since then statistical 

inference of SSRe model has been continuing to be studied 

under different assumptions. For some recent studies about this 

topic, one can see, Bhattacharyya [6], Rao et al. [22], Akgul 

and Senoglu [1], Bai et al. [5], Asadi and Panahi [2], De La 

Cruz [11] and Demiray and Kizilaslan [12]. Also, one of the 

important applications of this reliability model is to evaluate 

the strength of coated microlayers on the surfaces of 

mechanical devices. In surface coating operations, the fluid 

breaks up into very fine droplets by the nozzle and then 

sprayed onto the surface. The adhesion of these droplets 

depends on the wettability of the surface (Figure 1). The effect 

of surface wettability (SWet) on the coating strength and 

resistance can be evaluated by the SSRe model. Moreover, due 

to substantial improvement of science and technology, we 

cannot get the adequate number of failure times of some units 

which are put on the experiment. Therefore, experimenters deal 

with the censored sample. The forms of censoring schemes 

(CS) are varied. The most frequently adopted censoring 

schemes are type-I, type-II and hybrid (Hy) censoring. 
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Figure 1. The view of droplet impact onto partial wettable (right) and wettable (left) surfaces 

The advent of progressive censoring (PrC) schemes ([4]) 

has greatly improved the two situations above, which means 

that the random removal of survival units with pre-fixed 

numbers happens on the basis of type-I or type-II censoring at 

each failure. Later, generalizations of the PrC known as 

progressive hybrid and adaptive PrC schemes were proposed 

by Kundu and Joarder [16] and Ng et al. [20] respectively. The 

above censoring schemes have been studied by many 

researchers based on different distributions. Childs et al. [7] 

obtained the exact inference for the exponential distribution 

based on type-I and type-II hybrid CSs. Lee and Seo [17] 

obtained the estimates for the Gompertz parameters under 

progressive (Pr) censored sample. Similar studies were 

considered by Ferreira and Silva [14] for Weibull distribution 

when right CS is available, Starling et al. [23] for improving 

Weibull distribution using generalized type-I CS, Chiou and 

Chen [8] for lifetime performance index under type-II CS. 

Also, for accelerated life-time reliability model (ALTM), Wang 

et al [24] and Asadi et al. [3] considered estimation methods 

under PrC and adaptive PrC respectively. Further, Lone and 

Panahi [18] studied the ALTM based on the Gompertz unified 

Hy censored data. Moreover, the developments and needs in 

engineering, manufacturing and technology inspire more 

improved censoring schemes (CS). Recently, Yan et al. [25] 

introduced a novel CS called the IAPrgCS-II which is arose in 

a reliability studies as follows: An experiment starts with n 

identical items, prefixed effective number𝑚; (𝑚 < 𝑛) and the 

prefixed PrC 𝑅 = (𝑅1, 𝑅2, . . . , 𝑅𝑚). The 𝑅𝑖 at the time of ith 

failure may change during the test. Let 𝑇1 and 𝑇2, be the two 

time points, where, 𝑇1 < 𝑇2. Based on IAPrgCS-II, there are 

three Cases of observations as follow ([25]): 

Case I: {𝑋1:𝑚:𝑛, 𝑋2:𝑚:𝑛, . . . , 𝑋𝑚:𝑚:𝑛}       if   𝑋𝑚:𝑚:𝑛 < 𝑇1 < 𝑇2, 

Case II: {𝑋1:𝑚:𝑛, . . , 𝑋𝑘1:𝑚:𝑛 , . . . , 𝑋𝑚:𝑚:𝑛}  if   𝑇1 < 𝑋𝑚:𝑚:𝑛 < 𝑇2, 

Case III: {𝑋1:𝑚:𝑛, . . , 𝑋𝑘1:𝑚:𝑛, . . . , 𝑋𝑘2:𝑚:𝑛} if  𝑇1 < 𝑇2 < 𝑋𝑚:𝑚:𝑛. 

Where (𝑘1& 𝑘1 + 1 < 𝑚) and 𝑘2 are the number of failures 

before times 𝑇1 and 𝑇2 respectively. So, the joint likelihood 

function of the three forms of failure times is defined as: 

 𝐿(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠|𝑑𝑎𝑡𝑎) = 𝐴 ∏ 𝑓(𝑥𝑖:𝑚:𝑛)
𝑗2
𝑖=1 ∏ (1 −

𝑗1
𝑖=1

𝐹(𝑥𝑖:𝑚:𝑛))𝑅𝑖 (1 − 𝑓(𝑇∗))𝑅∗,  (1) 

where, (𝑗1, 𝑗2, 𝑅∗, 𝑇∗) is (𝑚, 𝑚, 0,0), (𝑘1, 𝑚, 𝑛 − 𝑚 −

∑ 𝑅𝑖
𝑘1
𝑖=1 , 𝑥𝑚:𝑚:𝑛) and (𝑘1, 𝑘2, 𝑛 − 𝑘2 − ∑ 𝑅𝑖

𝑘1
𝑖=1 , 𝑇2) for cases I, 

II and III respectively. This scheme guarantees that the 

experimental time will not exceed a prefixed time. The Burr III 

is one of the most widely used distributions in the reliability 

studies. Let X be a random variable follows the Burr III, then, 

the PDF, 𝑓(. ),and CDF 𝐹(. ), of X are given, respectively, by 

𝑓(𝑥; 𝛼, 𝛽) =
𝛼𝛽𝑥−𝛽−1

(1+𝑥−𝛽)𝛼+1 ;   𝑥 > 0;  𝛼 and 𝛽 > 0, (2) 

and 

𝐹(𝑥; 𝛼, 𝛽) = (1 + 𝑥−𝛽)−𝛼;   𝑥 > 0;  𝛼 and 𝛽 > 0.    (3) 

Recently, more and more scholars have turned attention to 

Burr III distribution. Cordeiro et al. [10] considered the model 

estimates under Pr censored sample. Panahi [21] used the 

different approaches to attain the estimations for the parameters 

of this distribution under unified Hy censored sample. Dutta 

and Kayal [13] obtained the estimations of this model based on 

unified Pr hybrid censoring. Also, the use of different types of 

data in reliability encourages researchers to study the 

application of reliability models in different sciences. In this 

study, we try to expand the applications of the reliability model 

in engineering field.  Hence, this study aims to look into the 

reliability model through different estimation methods based on 

IAPrgCS-II and consider its application in the coating process. 

As far as we know, the classical and Bayesian estimates of the 

reliability model have not been studied under IAPrgCS-II. 

Therefore, we consider the estimation of SSRe, in the case of 

each component has a Burr III distribution with common shape 

parameter 𝛽 and both are exposed to IAPrgCS-II. The SSRe 

model parameters are acquired using maximum likelihood 

estimators (MLEs). Using the normal approximation, 

approximate confidence intervals (ApCIs) for the SSRe’s 

parameters are obtained. The Lindley’s approximation (LiA) 

and Markov Chain Monte Carlo via Metropolis-Hastings 

(MeHa) algorithm are used for obtaining the BEs. The MeHa 

technique is considered to compute the associated credible 

intervals (CrIs). Another importance is the implementation of 

the obtained methods to the DrS data under two SWets. For this 

aim, droplet splashing data under two SWets are compared by 

using the considered SSRe model results.  The ML and ApCIs 

estimates for the SSRe are derived in section 2.  In section 3, 

the LiA technique and MCMC method with MeHa algorithm 

are applied to acquire the BEs of SSRe. In section 4, we offer a 

simulation study, under which the above estimation methods 

are comparatively analyzed. In section 5, an illustration of how 

the proposed model and methods may be utilized in 

engineering problems is presented with the analysis of the DrS 

data. A summary and some conclusions are given in section 6. 

2. Model Description and Classical Inference 

The SSRe model is widely utilized in the reliability engineering 
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to determine the probability of the system working properly. In 

other words, a system will properly work as long as X exceeds 

Y. For example, consider X as the pressure inside the chemical 

equipment and Y as the strength of the equipment wall. Then 

SSRe represents the probability of damage to the equipment. 

Let the model consists of strength variable such that 𝑋 ∼

𝐵𝐼𝐼𝐼(𝛼, 𝛽) and independent stress variable 𝑌 ∼ 𝐵𝐼𝐼𝐼(𝜆, 𝛽). 

Then, the SSRe model can be written as: 

𝑆𝑆𝑅𝑒 = 𝑃(𝑋 > 𝑌) = ∫ 𝑃(𝑋 > 𝑌|𝑌 = 𝑦)
∞

0

𝑓𝑌(𝑦)𝑑𝑦 

                       = ∫ 𝑓𝑌(𝑦)𝐹𝑌(𝑥)
∞

0
𝑑𝑦 =

𝜆

𝛼+𝜆
,  (4) 

which is a continous function of SSRe parameters (Figure 

2).  

 
Figure 2. The 3D plot of SSRe model. 

Now, let 𝑋
⎴

= (𝑋1:𝑚1:𝑛1
, . . . , 𝑋𝑗1:𝑚1:𝑛1

, . . . , 𝑋𝑗2:𝑚1:𝑛1
) and 𝑌

⎴
=

(𝑌1:𝑚2:𝑛2
, . . . , 𝑌ℎ1:𝑚2:𝑛2

, . . . , 𝑌ℎ2:𝑚2:𝑛2
) be IAPrgCS-II samples 

from the 𝐵𝐼𝐼𝐼(𝛼, 𝛽) and 𝐵𝐼𝐼𝐼(𝜆, 𝛽) with CSs 𝑅1 =

(𝑅1, . . . , 𝑅𝑗1
, 0, . . . ,0, 𝑅1

∗) and 𝑅2 = (𝑅1, . . . , 𝑅ℎ1
, 0, . . . ,0, 𝑅2

∗) 

respectively. Where, (𝑅1
∗,𝑅2

∗) for different IAPrgCS-II cases are 

(0,0), (𝑛1 − 𝑚1 − ∑ 𝑅𝑖
𝑘1𝑥
𝑖=1

, 𝑛2 − 𝑚2 − ∑ 𝑅𝑖

𝑘1𝑦

𝑖=1
) and (𝑛1 −

𝑘2𝑥
− ∑ 𝑅𝑖

𝑘1𝑥
𝑖=1

, 𝑛2 − 𝑘2𝑦
− ∑ 𝑅𝑖

𝑘1𝑥
𝑖=1

) respectively. The joint 

PDF of the observed sample, labeled𝐿(𝛼, 𝛽, 𝜆|𝑑𝑎𝑡𝑎), is: 

𝐿(𝛼, 𝛽, 𝜆|𝑑𝑎𝑡𝑎) ∝ ∏ (𝛼𝛽𝑥𝑖:𝑚1:𝑛1

−𝛽−1
(1 +

𝑗2
𝑖=1

𝑥𝑖:𝑚1:𝑛1

−𝛽
)−𝛼−1) ∏ (1 − (1 + 𝑥𝑖:𝑚1:𝑛1

−𝛽
)−𝛼)

𝑅𝑖𝑗1
𝑖=1 (1 − (1 +

𝑇1
∗−𝛽

)−𝛼)
𝑅1

∗

× ∏ (𝜆𝛽𝑦𝑖:𝑚2:𝑛2

−𝛽−1
(1 + 𝑦𝑖:𝑚2:𝑛2

−𝛽
)−𝜆−1)

ℎ2
𝑖=1 ∏ (1 −

ℎ1
𝑖=1

(1 + 𝑦𝑖:𝑚2:𝑛2

−𝛽
)−𝜆)

𝑅𝑖
(1 − (1 + 𝑇2

∗−𝛽
)−𝜆)

𝑅2
∗

,                                                      

(5) 

where, the values of 𝑗1, 𝑗2, ℎ1, ℎ2, 𝑇1
∗and 𝑇2

∗ are defined in  

Table 1 

Table 1. Various choices of 𝑗1, 𝑗2, ℎ1, ℎ2, 𝑇1
∗and 𝑇2

∗. 

 

Therefore, 𝑙𝑛 𝐿 (𝛼, 𝛽, 𝜆|𝑑𝑎𝑡𝑎)is obtained as:   
𝑙𝑛 𝐿 (𝛼, 𝛽, 𝜆|𝑑𝑎𝑡𝑎) = 𝑙(𝛼, 𝛽, 𝜆|𝑑𝑎𝑡𝑎) = 𝑗2 𝑙𝑛 𝛼 + ℎ2 𝑙𝑛 𝜆 + (𝑗2 + ℎ2) 𝑙𝑛 𝛽 −

(𝛽 + 1) (∑ 𝑙𝑛
𝑗2
𝑖=1 𝑥𝑖:𝑚1:𝑛1

+ ∑ 𝑙𝑛
2

h

𝑖=1 𝑦𝑖:𝑚2:𝑛2
) − (𝛼 + 1) ∑ 𝑙𝑛

1 1: :i m n
𝑗2
𝑖=1

+ ∑ 𝑅𝑖
𝑗1
𝑖=1 𝑙𝑛(1 − (

1 1: :i m n )
−𝛼

) + 𝑅1
∗ ln (1 − ( 1 )

−𝛼
) − ( 

+ 1) ∑ 𝑙𝑛
2 2: :i m nP + ∑ 𝑅𝑖

1
h

𝑖=1
2

h

𝑖=1 𝑙𝑛(1 − (
2 2: :i m nP )

−
) + 𝑅2

∗ ln (1 − (

2 )
−

)         (6) 

 

Here, 
1 1: :i m n = 1 + 𝑥𝑖:𝑚1:𝑛1

−𝛽
, 𝑃𝑖:𝑚2:𝑛2

= 1 + 𝑦𝑖:𝑚2:𝑛2

−𝛽
, 1 = 1 +

𝑇1
∗−𝛽

 and 2
2

= 1 + 𝑇2
∗−𝛽 

 

The MLEs can be obtained by taking derivatives of 𝛼, 𝛽and 

𝜆 and make them equal to 0 . Using the invariance property of 

the MLE helps us to obtain MLE of SSRe, denoted by 𝑆𝑆𝑅�̂� as 

replacing the parameters in Equation (4) with their estimates to 

be found by using the �̂� and �̂�. That is the 𝑆𝑆𝑅�̂� can be written 

as: 

𝑆𝑆𝑅�̂� =
�̂�

�̂�+�̂�
.   (7) 

2.1. ApCI for SSRe Based on MLE 

In this subsection, we construct ApCI for the SSRe parameter as 

an approximate confidence interval. Theoretically speaking, the 

variance-covariance of 𝜂 = (𝛼, 𝛽, 𝜆) can be derived as follows: 

𝐼(𝛼, 𝛽, 𝜆) = [

𝐼11 𝐼12 𝐼13

𝐼21 𝐼22 𝐼23

𝐼31 𝐼32 𝐼33

] , 𝐼𝑖𝑗 =
−𝜕2𝑙(𝛼,𝛽,𝜆|𝑑𝑎𝑡𝑎)

𝜕𝜃𝑖𝜕𝜃𝑗
; 𝑖, 𝑗 = 1,2,3, 

where,  𝐼𝑖𝑗 ;   𝑖, 𝑗 = 1,2,3 are given in the Appendix. It is worth 

mentioning that the expected values in the Fisher information 

matrix cannot be obtained explicitly since the distribution of 

the MLEs under the IAPrgCS-II cannot be obtained explicitly. 

Therefore, the observed information matrix 𝐼(𝛼, 𝛽, 𝜆) is applied 

in the asymptotic normality of the MLE. Based on regularity 

conditions, the estimator 𝑆𝑆𝑅�̂� asymptotically normal with 

mean 𝑆𝑆𝑅𝑒 and variance 𝜉 respectively, where (Rao et al. 

(2013) ), 

𝜉 =
𝑄∗

|𝐼(𝛼, 𝛽, 𝜆)|
; 𝑄∗ = (−

𝜆

(𝛼 + 𝜆)2)
2

𝑑11 + (
𝛼

(𝛼 + 𝜆)2)
2

𝑑22

− 2 (
𝜆

(𝛼 + 𝜆)2) (
𝛼

(𝛼 + 𝜆)2) 𝑑12, 

and 

𝐼−1(𝛼, 𝛽, 𝜆) =
1

|𝐼(𝛼, 𝛽, 𝜆)|
[

𝑑11 𝑑12 𝑑13

𝑑21 𝑑22 𝑑23

𝑑31 𝑑32 𝑑33

] = 

1

|𝐼(𝛼,𝛽,𝜆)|
[

𝐼22𝐼33 − 𝐼23
2 𝐼13𝐼23 −𝐼13𝐼22

𝐼13𝐼23 𝐼11𝐼33 − 𝐼13
2 −𝐼11𝐼23

−𝐼13𝐼22 −𝐼11𝐼23  𝐼11𝐼22

].           (10) 

 

2.2. Testing Problem 

In this article, the shape parameters (𝛽) of the stress and 

strength (S-S) variables are considered equal, which is an 

important issue of practical opinion. Therefore, in this section, 

this issue has been considered using the likelihood ratio test 

𝑪𝒂𝒔𝒆𝒔 𝒋𝟏 𝒋𝟐 𝒉𝟏 𝒉𝟐 𝑻𝟏
∗  𝑻𝟐

∗  

I 𝑚1 𝑚1 𝑚2 𝑚2 0 0 

II 𝑘1𝑥
 𝑚1 𝑘1𝑦

 𝑚2 𝑥𝑚1:𝑚1:𝑛1
 𝑦𝑚2:𝑚2:𝑛2

 

III 𝑘1𝑥
 𝑘2𝑥

 𝑘1𝑦
 𝑘2𝑦

 𝑇2𝑥
 𝑇2𝑦
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(LIRT). Suppose that the S-S variables follow the Burr III 

distributions with shape parameters 𝛽1, 𝛽2 and the following 

hypothesis is considered as: 

𝐻0: 𝛽1 = 𝛽2 = 𝛽 versus  𝐻1: 𝛽1 ≠ 𝛽2. 

Based on large sample size, the LIR statistic is: 

𝜂 = −2{𝑙1(�̂�1, �̂�2|𝑑𝑎𝑡𝑎) − 𝑙2(𝛽|𝑑𝑎𝑡𝑎)} ∼ 𝜒1
2.        (11) 

Where, 𝑙1(�̂�1, �̂�2|𝑑𝑎𝑡𝑎) and 𝑙2(𝛽|𝑑𝑎𝑡𝑎) are the log-likelihood 

functions based on (�̂�1, �̂�2) and common parameter (𝛽) cases, 

respectively. The LIRT can be obtained using the asymptotic 

distribution of 𝜂. 

3. Bayesian estimation 

Different from frequency estimation, Bayesian estimation treats 

parameters as unknown random variables rather than unknown 

deterministic variables. Results from the Bayesian method are 

always better than the results from classical approaches for the 

reason of considering more known information. In this section, 

approximate BEs of SSRe model are attained when all the 

parameters 𝛼, 𝛽 and 𝜆 have independent gamma (InG) 

distributions with parameters (𝑎𝑖 , 𝑏𝑖); 𝑖 = 1,2,3 respectively, as 

prior distributions. Note that the gamma distribution is versatile 

for adjusting different shapes of the density function. Jeffery’s 

prior can be obtained as a special case of the gamma prior. The 

squared error (SqE) loss function is proposed. The SqE is  

a balance type loss function. Based on this loss function, we 

can provide equal over and underestimates to the actual value 

of parameter. So, we prefer the SqE to compute the BEs. Then, 

the joint posterior PDF of the three various parameters is 

indicated as below: 

𝜋(𝛼, 𝛽, 𝜆|𝑑𝑎𝑡𝑎) =
𝐿(𝛼, 𝛽, 𝜆|𝑑𝑎𝑡𝑎)𝜋(𝛼, 𝛽, 𝜆)

∫ ∫ ∫ 𝐿(𝛼, 𝛽, 𝜆|𝑑𝑎𝑡𝑎)𝜋(𝛼, 𝛽, 𝜆)𝑑𝛼𝑑𝛽𝑑𝜆
∞

0

∞

0

∞

0

∝ 𝛼𝑗2+𝑎1−1𝑒−𝛼(𝑏1+∑ 𝑙𝑛(ℵ𝑖:𝑚1:𝑛1))
𝑗2
𝑖=1 𝜆ℎ2+𝑎2−1𝑒−𝜆(𝑏2+∑ 𝑙𝑛(𝑃𝑖:𝑚2:𝑛2))ℎ2

𝑖=1  

                  × 𝛽𝑗2+ℎ2+𝑎3−1𝑒−𝛽(𝑏3+∑ 𝑙𝑛 𝑥𝑖:𝑚1:𝑛1+∑ 𝑙𝑛 𝑦𝑖:𝑚2:𝑛2)
ℎ2
𝑖=1

𝑗2
𝑖=1  

∏ ( 𝑥𝑖:𝑚1:𝑛1
(ℵ𝑖:𝑚1:𝑛1

))
−1𝑗2

𝑖=1 × ∏ ((1 − (ℵ𝑖:𝑚1:𝑛1
)−𝛼)𝑅𝑖)

𝑗1
𝑖=1 ×

(1 − (℘1)−𝛼)𝑅1
∗

∏ ( 𝑦𝑖:𝑚2:𝑛2
(𝑃𝑖:𝑚2:𝑛2

))
−1ℎ2

𝑖=1
∏ (1 −

ℎ1
𝑖=1

(𝑃𝑖:𝑚2:𝑛2
)−𝜆)

𝑅𝑖
(1 − (℘2)−𝜆)

𝑅2
∗

.             (12) 

Using the SqE loss function, the BEs of the SSRe, can be 

written as  

𝑆𝑆𝑅𝑒̂𝐵𝑎𝑦𝑒𝑠𝑆𝐸 ∫ ∫ ∫ 𝑆𝑆𝑅𝑒 ×
∞

0
𝜋(𝛼, 𝛽, 𝜆|𝑑𝑎𝑡𝑎)

∞

0

∞

0

̂       (13) 

Two approximation methods, LiA technique and MeHa 

algorithm are applied to obtain BE of SSRe due to the multiple 

integrals in Equation (13) are not obtained analytically and 

difficulties in numerical computations of these integrals. 

3.1. Lindley’s Approximation (LiA ) 

In this subsection, we discuss the BEs of SSRe using LiA 

technique. This approximation method saves computation time 

for the Bayesian method and we can also obtain mean and 

variance of SSRe explicitly. The detailed derivations are 

omitted to maintain brevity. With respect to SqE function, the 

BE of SSRe leads to: 

𝑆𝑆𝑅𝑒𝐿𝐼𝑁 = 𝑆𝑆𝑅�̂� +
1

2
∑ ∑(𝑢𝑖𝑗 + 2𝑢𝑖𝜌𝑗)

3

𝑖=1

3

𝑖=1

𝜎𝑖𝑗

+ ∑ ∑ ∑ ∑ 𝑙𝑖𝑗𝑘

3

1h =

3

𝑘=1

3

𝑗=1

3

𝑖=1

𝜎𝑖𝑗𝜎
kh

𝑢
h

|𝜉 = 𝜉 

=
�̂�

�̂� + �̂�
+

1

2
[𝛹(𝑢1𝜎11 + 𝑢2𝜎12) + 𝛧(𝑢1𝜎21 + 𝑢2𝜎22)

+ 𝛵(𝑢1𝜎31 + 𝑢2𝜎32)] 

+𝑢1(𝜌1𝜎11 + 𝜌2𝜎12 + 𝜌3𝜎13) + 𝑢2(𝜌1𝜎21 + 𝜌2𝜎22 + 𝜌3𝜎21)

+ 𝑢12𝜎12 +
1

2
(𝑢11𝜎11 + 𝑢22𝜎22), 

obtained at 𝜉 = (�̂�, �̂�, �̂�). Some elements of 𝑆𝑆𝑅𝑒𝐿𝐼𝑁are: 

Ψ = 𝜎11𝑙111 + 𝜎33𝑙331, 𝑍 = 𝜎22𝑙222 + 𝜎33𝑙332 and Τ =

2𝜎13𝑙133 + 2𝜎23𝑙233 + 𝜎33𝑙333, 

𝑢1 = −
𝜆

(𝛼 + 𝜆)2
, 𝑢2 =

𝛼

(𝛼 + 𝜆)2
, 𝑢11 =

2𝜆

(𝛼 + 𝜆)3
, 𝑢12 = 𝑢21

=
𝜆 − 𝛼

(𝛼 + 𝜆)3
, 𝑢22 = −

2𝛼

(𝛼 + 𝜆)3
,  

𝑢3 = 0, 𝑢13 = 𝑢23 = 𝑢31 = 𝑢32 = 0, 𝜌1 =
𝑎1 − 1

𝛼
− 𝑏1, 𝜌2

=
𝑎2 − 1

𝜆
− 𝑏2, 𝜌3 =

𝑎3 − 1

𝛽
− 𝑏3, 𝑙111

=
𝜕𝑙(𝛼, 𝛽, 𝜆|𝑑𝑎𝑡𝑎)

𝜕𝛼3
, 

𝑙122 =
𝜕𝑙(𝛼, 𝛽, 𝜆|𝑑𝑎𝑡𝑎)

𝜕𝛼𝜕𝜆2
, 𝑙222 =

𝜕𝑙(𝛼, 𝛽, 𝜆|𝑑𝑎𝑡𝑎)

𝜕𝜆3
, 𝑙333

=
𝜕𝑙(𝛼, 𝛽, 𝜆|𝑑𝑎𝑡𝑎)

𝜕𝛽3
, 𝑙123 =

𝜕𝑙(𝛼, 𝛽, 𝜆|𝑑𝑎𝑡𝑎)

𝜕𝛼𝜕𝜆𝜕𝛽
, 

Also, 𝜎𝑖𝑗 is (i,j)th element of the inverse of the matrix [−𝑙𝑖𝑗]. 

One disadvantage of LiA technique is that it requires higher 

order partial (HOP) derivatives of the 𝑙(𝛼, 𝛽, 𝜆|𝑑𝑎𝑡𝑎). Further, 

the LiA cannot be applied to create the CrIs due to lack of an 

explicit form of the PDF for SSRe. So, the MCMC via MeHa 

algorithm is used to derive another approximate BE and 

constructed the CrIs. The MeHa algorithm is free from HOP 

derivatives.  

3.2. MCMC Method 

As mentioned earlier, the LiA has some disadvantages. In many 

cases, due to the complexity of the form of the PDF and the 

applied CS, the calculation of the HOP derivatives is 

complicated. That is why it motivates us to consider the more 

flexible method in the BEs for SSRe. The important sampling 

(ImS) and MeHa are two approaches of the MCMC.  It is easy 

to calculate the BEs based on the ImS method, which is 

important in practice. But if the form of the PDF becomes 

complicated, the conditional posterior distribution of the 

parameters cannot be easily attained, so the MeHa algorithm is 

a more appropriate choice for calculating the BEs. This 

algorithm is an efficient method to calculate the BEs which can 

be easily conducted and help to reduce the operation 

complexity of high dimensionel distribution. It is an attractive 

approach to set up the Markov chain from the conditional 

distribution of each parameter.  So, the BEs and the 

corresponding CrIs of the SSRe based on IAPrgCS-II are 

computed by using the MeHa ([15,19]) algorithm.  To apply 

this method, the marginal posterior PDFs of the 𝛼, 𝛽 and 𝜆 can 

be re-expressed as: 

 𝜋1(𝛼|𝛽, 𝜆, 𝑑𝑎𝑡𝑎) =𝛼𝑗2+𝑎1−1𝑒−𝛼(𝑏1+∑ 𝑙𝑛(ℵ𝑖:𝑚1:𝑛1))
𝑗2
𝑖=1 ×

∏ ((1 − (ℵ𝑖:𝑚1:𝑛1
)−𝛼)𝑅𝑖)

𝑗1
𝑖=1 × (1 − (℘1)−𝛼)𝑅1

∗
,           (14) 

and 

 𝜋2(𝜆|𝛼, 𝛽, 𝑑𝑎𝑡𝑎) =𝜆ℎ2+𝑎2−1𝑒−𝜆(𝑏2+∑ 𝑙𝑛(P𝑖:𝑚2:𝑛2))ℎ2
𝑖=1 ×
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∏ (1 − (P𝑖:𝑚2:𝑛2
)−𝜆)

𝑅𝑖ℎ1
𝑖=1 (1 − (℘2)−𝜆)

𝑅2
∗

 (15) 

 𝜋3(𝛽|𝛼, 𝜆, 𝑑𝑎𝑡𝑎)

=𝛽𝑗2+ℎ2+𝑎3−1𝑒−𝛽(𝑏3+∑ 𝑙𝑛 𝑥𝑖:𝑚1:𝑛1+∑ 𝑙𝑛 𝑦𝑖:𝑚2:𝑛2)
ℎ2
𝑖=1

𝑗2
𝑖=1

× ∏(ℵ𝑖:𝑚1:𝑛1
)−1

𝑗2

𝑖=1

∏((1 − (ℵ𝑖:𝑚1:𝑛1
)−𝛼)𝑅𝑖)

𝑗1

𝑖=1

 

                            × (1 − (℘1)−𝛼)𝑅1
∗

∏ ( P𝑖:𝑚2:𝑛2
)

−1ℎ2
𝑖=1  ×

∏ (1 − (P𝑖:𝑚2:𝑛2
)−𝜆)

𝑅𝑖ℎ1
𝑖=1 (1 − (℘2)−𝜆)

𝑅2
∗

. (16) 

It is clearly seen that the Equations (14)-(16) do not show 

standard forms and therefore it is not possible to obtain sample 

directly by standard process. In that case, if the posterior 

density function is roughly symmetric, a normal distribution 

can be used to approximate it. So, we will use the MeHa 

technique to calculate the BE of the SSRe. 

The MeHa Algorithm: 

Step 1: Set 𝑖 = 1 and Start by using the initial values of 

(�̂�, �̂�, �̂�). 

Step 2: Use MeHa steps to generate 𝛼(𝑖) , 𝛽(𝑖) and 𝜆(𝑖) from the 

distributions𝑁(𝛼(𝑖−1), 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝛼)),𝑁(𝛽(𝑖−1), 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝛽)) 

and 𝑁(𝜆(𝑖−1), 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜆)) respectively, for 1,...,i M= . 

Step 3: Calculate the 𝑆𝑆𝑅𝑒(𝑖) as, 
𝜆

(𝑖)

𝛼
(𝑖)

+𝜆
(𝑖). 

Step 4: Set 𝑖 = 𝑖 + 1. 

Step 5: Repeat steps 1-4, M times and obtain 

𝑆𝑆𝑅𝑒(1), . . . , 𝑆𝑆𝑅𝑒(𝑀). 

Step 6,7: The BE of 𝑆𝑆𝑅𝑒is shown as: 

𝑆𝑆𝑅�̂�𝑀𝐻𝑆𝐸
=

1

𝑀 − 𝑁𝐵
∑ 𝑆𝑆𝑅𝑒(𝑖)

𝑀

𝑖=𝑁𝐵+1

;    where, 𝑁𝐵 𝑖𝑠  𝑏𝑢𝑟𝑛

− 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑. 

Step 8: Order 𝑆𝑆𝑅𝑒(𝑖);   𝑖 = 1, . . , 𝑀, then the 100(1 − 𝛾)% 

CrIs of 𝑆𝑆𝑅𝑒is given as follows:[𝑆𝑆𝑅�̂�(𝑀𝛾/2), 𝑆𝑆𝑅�̂�(𝑀(1−𝛾/2))] . 

4. Simulation Study 

This section is devoted to the comparative study of the 

proposed estimates under different IAPrgCS-II censored 

schemes. Different estimation methods of SSRe parameters are 

applied using frequency and Bayesian estimations. For 

comparson and analysis, 10000 cycles of simulations are 

repeated for the whole process. We consider values (𝛼, 𝛽, 𝜆) as 

(3.5, 2, 4) and (2, 1, 6) to provide values of SSRe as 0.533 

(𝑆𝑆𝑅𝑒1) and 0.750 (𝑆𝑆𝑅𝑒2), respectively. Two different 𝑇𝑖 ;  𝑖 =

1,2 values:  𝑇1 = 0.7, 𝑇2 = 1.2 and 𝑇1 = 1.2, 𝑇2 = 2.5are taken 

for both S-S variables. Based on IAPrgCS-II, the observed data 

(OD) and the removed items during the test (RIDT) are 

respectively as the following Cases (I, II, III): 

I:  The OD and RIDT are 𝑋𝑙:𝑚1:𝑛1
 (or 𝑌𝑙:𝑚2:𝑛2

;  𝑙 =

1, . . , 𝑚2) and 𝑛1 − 𝑚1 − ∑ 𝑅𝑙
𝑚1−1
𝑙=1  (or 𝑛2 − 𝑚2 − ∑ 𝑅𝑙

𝑚2−1
𝑙=1 ). 

II:  The OD and RIDT are 𝑋𝑙:𝑚1:𝑛1
; 𝑙 =

1, . . , 𝑚1 (or 𝑌𝑙:𝑚2:𝑛2
; 𝑙 = 1, . . , 𝑚2) and 𝑛1 − 𝑚1 − ∑ 𝑅𝑙

𝑘1𝑥
𝑙=1

 

(or 𝑛2 − 𝑚2 − ∑ 𝑅𝑙

𝑘1𝑦

𝑙=1 ). 

III:  The OD and RIDT are𝑋𝑙:𝑚1:𝑛1
;  𝑙 = 1, . . , 𝑘2𝑥

 

(or 𝑌𝑙:𝑚2:𝑛2
;  𝑙 = 1, . . , 𝑘2𝑦

) and 𝑛1 − 𝑘2𝑥
− ∑ 𝑅𝑙

𝑘2𝑥
𝑙=1  (or 𝑛2 −

𝑘2𝑦
− ∑ 𝑅𝑙

𝑘2𝑦

𝑙=1 ). 

We have formulated three systematic CSs including, 

➢ CSI : 𝑅 = (0×(𝑚/2−1), 𝑛 − 𝑚, 0×(𝑚/2)), 

➢ CSII : {
𝑅 = (3×(𝑚/2), 0×(𝑚/2));           𝑚/𝑛 = 50% , 

𝑅 = (1×(𝑛−𝑚), 0×(2𝑚−𝑛));        𝑚/𝑛 = 80%.
 

➢ CSIII :𝑅 = (𝑛 − 𝑚, 0×(𝑚−1))  

In the Bayesian estimations, very small values of the hyper-

parameters , i.e. ai = bi = 0.0001 for i = 1, 2, 3 can be 

considered. But due to the closeness of the BEs under this prior 

distribution, we prefer informative priors such as 𝑆𝑆𝑅𝑒1: 𝑎1 =

7, 𝑏1 = 2, 𝑎3 = 2, 𝑏3 = 1, 𝑎2 = 8, 𝑏2 = 2and 𝑆𝑆𝑅𝑒2: 𝑎1 =

2, 𝑏1 = 1, 𝑎2 = 12, 𝑏2 = 2, 𝑎3 = 𝑏3 = 1. We propose four 

different sets of (m,n) as (30,15), (30,24), (50, 25) and (50,40). 

For the MeHa algorithm, we take M = 10000 and NB = 1000. 

The MSEs and average lengths (ALs) of the SSRe for 

𝑆𝑆𝑅𝑒1 and 𝑆𝑆𝑅𝑒2 are presented in Tables 23, 4 and 5. 

According to the results shown in Tables 1, 2, 3 and 4, we can 

get some conclusions. The simulation research revealed that as 

the sample size increased, the MSE values of the various 

estimates generally decrease which shows the consistancy of 

estimators. Moreover, average lengths of the ApCIs and CrIs 

are decreasing with larger sample sizes. The CrIs have also 

smaller AL than ApCIs. The ML estimates and BEs are 

deserving of comparison. The BEs using MeHa algorithm 

outperforms LiA technique in terms of MSEs. Moreover, the 

BEs using the MCMC method are better than other estimates 

based on MSEs values. Choosing different parameter values for 

the S-S components can affect the performance of the 

estimation, because different parameter values provide 

different ranges of samples. The values of 𝑇𝑖;  𝑖 = 1,2 for the S-

S variables are assumed to be the same for both components to 

account for the simultaneous testing time. We can be seen that 

the increasing of T1 and T2 for other fixed values cause smaller 

MSE values in all cases since it provides more testing-time to 

let more failure observe. The performances of the estimators 

are better when m increases. Also from the censoring schemes, 

the CSII seems to be superior to other CSs. From the above 

analysis of the results, we present the conclusion that the 

results of the BEs perform better than ML estimates in the 

proposed model environment. 

5. Real Data Analysis 

Usage and modeling of DrS data have been paying attention to 

the engineering researchers when we consider the problems in 

the reducing the coating strength and so damaging of the 

surfaces. Therefore, a series of the splashing data of silicon oil 

drops is analyzed here to elucidate the practical application of 

the model we study in the proceeding sections. This data 

originaly reported by Asadi and Panahi [2]. The glass surface 

(GS) and Teflon surface (TS) with sample sizes 𝑛1 = 𝑛2 = 40 

are considered to acquire the SSRe estimates. The K-S statistic 

and associated p-value for GS are 0.106 and 0.716, 

respectively. The same quantities for the TS data set are 0.109 

and 0.688 respectively. Thus, the Burr III is a reasonably good 

fit for these data. The histograms and PP plots also support this 

results (see Figures 3 and 4).  

If the SSRe is greater than 0.50, we can say that the TS will 

increase the splash of drops. Moreover, if the system reliability 

is less than 0.50, we will think of the reverse result of the 
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aforementioned scenario. Now, we fit these random samples to 

Burr III distribution and their MLEs are attained as �̂� =

156.7151, �̂�1 =  6.1391, �̂� = 267.3969, �̂�2 = 7.1174. We 

assumed that this distribution has the same shape parameter to 

illustrate the proposed method. For testing that 𝐻0 = 𝛽1 =

𝛽2 = 𝛽, we perform a LIRT and the respective value is 1.5154. 

Thus, both stress and strength variables can be modelled by 

using the Burr III with equal 𝛽 parameter. The non-information 

prior is selected to estimate the unknown parameters because 

the information is relatively limited. The hyper-parameters 

under the non-informative prior are taken as 𝑎1 = 𝑏1 = 𝑎3 =

𝑏3 = 𝑎2 = 𝑏2 = 0.00001, which are close to zero.  

 

 

  
Figure 3. The PP plot and histogram for GS data. 

 

  
Figure 4. The PP plot and histogram for TS data. 

It is observed that since all the estimates of SSRe values are 

greater than 0.50, the GS should be used for decreasing the 

splashing phenomenon on the considered scenario. We assume 

three IAPrgCS-II censoring plan by considering𝑅1 = (0 ∗

8,5,5,5,5,0 ∗ 8), 𝑅2 = (0 ∗ 10,5,5,5,5,0 ∗ 6), as: 

SCI: 𝑛1 = 𝑛2 = 40, 𝑚1 = 𝑚2 = 20, 𝑅1
∗ = 𝑅2

∗ = 0, 

𝑇1𝑇𝑆
(𝑘1𝑇𝑆

) = 2.6(24), 𝑇2𝑇𝑆
(𝑘2𝑇𝑆

) = 2.9(31), 𝑇1𝐺𝑆
(𝑘1𝐺𝑆

) =

2.4(22), 𝑇2𝐺𝑆
(𝑘2𝐺𝑆

) = 2.7(33), 𝑇1
∗ = 𝑇2

∗ = 0. 

SCII: 𝑛1 = 𝑛2 = 40, 𝑚1 = 𝑚2 = 20, 𝑅1
∗ = 𝑅2

∗ = 5, 

𝑇1𝑇𝑆
(𝑘1𝑇𝑆

) = 2.2(11), 𝑇2𝑇𝑆
(𝑘2𝑇𝑆

) = 2.9(31), 𝑇1𝐺𝑆
(𝑘1𝐺𝑆

) =

2.2(13), 𝑇2𝐺𝑆
(𝑘2𝐺𝑆

) = 2.7(33), 𝑇1
∗ = 2.51604, 𝑇2

∗ = 2.34780. 

SCIII: 𝑛1 = 𝑛2 = 40, 𝑚1 = 𝑚2 = 20, 𝑅1
∗ = 𝑅2

∗ = 8, 

𝑇1𝑇𝑆
(𝑘1𝑇𝑆

) = 2.2(11), 𝑇2𝑇𝑆
(𝑘2𝑇𝑆

) = 2.4(17), 𝑇1𝐺𝑆
(𝑘1𝐺𝑆

) =

2.2(13), 𝑇2𝐺𝑆
(𝑘2𝐺𝑆

) = 2.31(17), 𝑇1
∗ = 2.4, 𝑇2

∗ = 2.31. 

We also checked the convergnce of the Markov chain by using 

trace (Tr) and density (De) plots (Figures 6and 7) under SCIII. 

Figure 5 shows that the Markov Chain fluctuates around its 

center with similar variations.  Moreover, we observe from the 

Figure 6, the density plot has a symmetric and unimodal shape. 

The Tr and De plots for other schemes are similar.   
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Figure 5. The Tr plot of SSRe. 

 

 

 
Figure 6. The De plot of SSRe. 

The point estimation results along with 95% ApCI and CrI 

are reported in Table 5 for this real data study. We observed 

close estimates to each other for both estimation methods. 

Moreover, both approximate Bayes estimates of SSRe are 

similar. The CrI lengths (CrILs) are obtained smaller than ApCI 

lengths (ApCILs). It is observed that since all the estimates of 

SSRe values are greater than 0.50, the TS increases the 

splashing phenomenon. 

6. Conclusions 

Based on the potential effectiveness of the SSRe in engineering, 

the reliability modelling and assessment of the system are 

important. Also, due to advances and needs in engineering, 

manufacturing and technology, the use of improved censoring 

schemes is inevitable. Therefore, in this paper, we studied the 

SSRe estimation for Burr III distribution based on IAPrgCS-II. 

The main reason for selecting this censoring plan is that it can 

guarantee that the test time will not exceed a prefixed time. 

Plenty of estimation approaches from both frequency and 

Bayesian schools are applied under IAPrgCS-II. In the 

Bayesian procedure, LiA technique and MeHa algorithm are 

used to acquire the SSRe parameters.  The ApCI and CrI are 

evaluated based on the Fisher matrix and the same procedure of 

the Bayes point estimates. In addition to theoretical derivation, 

a simulation study is conducted and the DrS datasets under two 

wettabilities are analyzed to implement of the proposed model. 

We observed consistent and expected results. This study has 

novelty concerning the reliability model under IAPrgCS-II as 

well as engineering application of the obtained results. More 

efforts will be made on this distribution by considering the 

multicomponent systems under IAPrgCS-II. 
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Table 2. The MSEs and CI lengths of the 𝑆𝑆𝑅𝑒1 = 0.533under different CSs and 𝑇1 = 0.7, 𝑇2 = 1.2. 

 

Table 3. The MSEs and CI lengths of the 𝑆𝑆𝑅𝑒1 = 0.533 under different CSs and 𝑇1 = 1.2, 𝑇2 = 2.5. 

𝒏 𝒎 

     

𝑻𝟏 𝑻𝟐 CS 𝑴𝑳𝑬 𝑩𝒂𝒚𝒆𝒔𝑳𝒊𝒏𝒅𝒍𝒆𝒚 𝑩𝒂𝒚𝒆𝒔𝑴𝑯 𝑨𝒑𝑪𝑰𝑳𝒔 𝑪𝒓𝑰𝑳𝒔 

30 15 0.7 1.2 I 0.10754 0.08854 0.08325 0.49863 0.27944 

30 15 0.7 1.2 II 0.10065 0.08184 0.07989 0.47551 0.25002 

30 15 0.7 1.2 III 0.10908 0.08897 0.08476 0.49926 0.27979 

30 24 0.7 1.2 I 0.10211 0.08365 0.08117 0.47780 0.25498 

30 24 0.7 1.2 II 0.09754 0.07859 0.07576 0.46311 0.23765 

30 24 0.7 1.2 III 0.10231 0.08343 0.08195 0.47788 0.25513 

50 25 0.7 1.2 I 0.10327 0.08654 0.08132 0.47234 0.25779 

50 25 0.7 1.2 II 0.09855 0.07740 0.07586 0.46082 0.25030 

50 25 0.7 1.2 III 0.10287 0.08612 0.07999 0.47188 0.25762 

50 40 0.7 1.2 I 0.09327 0.07336 0.07155 0.43996 0.22564 

50 40 0.7 1.2 II 0.08966 0.06953 0.06732 0.43222 0.21978 

50 40 0.7 1.2 III 0.09532 0.07387 0.06897 0.43998 0.22420 

𝒏 𝒎 

     

𝑻𝟏 𝑻𝟐 CS 𝑴𝑳𝑬 𝑩𝒂𝒚𝒆𝒔𝑳𝒊𝒏𝒅𝒍𝒆𝒚 𝑩𝒂𝒚𝒆𝒔𝑴𝑯 𝑨𝒑𝑪𝑰𝑳𝒔 𝑪𝒓𝑰𝑳𝒔 

30 15 1.2 2.5 I 0.10207 0.08532 0.08101 0.48334 0.27552 

30 15 1.2 2.5 II 0.09864 0.08100 0.07744 0.47246 0.24996 

30 15 1.2 2.5 III 0.10213 0.08539 0.08265 0.48375 0.27569 

30 24 1.2 2.5 I 0.09779 0.07574 0.07315 0.47042 0.25211 

30 24 1.2 2.5 II 0.09643 0.07365 0.07095 0.46009 0.23645 

30 24 1.2 2.5 III 0.09772 0.07583 0.07318 0.47125 0.25318 

50 25 1.2 2.5 I 0.09953 0.07864 0.07665 0.46809 0.25527 

50 25 1.2 2.5 II 0.09758 0.07219 0.06890 0.46001 0.24888 

50 25 1.2 2.5 III 0.09968 0.07859 0.07678 0.46799 0.25526 

50 40 1.2 2.5 I 0.08856 0.06808 0.06672 0.43686 0.21974 

50 40 1.2 2.5 II 0.08231 0.06200 0.06111 0.42705 0.21305 

50 40 1.2 2.5 III 0.08866 0.06829 0.06669 0.43689 0.21979 
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Table 4. The MSEs and CI lengths of the 𝑆𝑆𝑅𝑒1 = 0.750under different CSs and 𝑇1 = 0.7, 𝑇2 = 1.2. 

 

Table 5. The MSEs and CI lengths of the 𝑆𝑆𝑅𝑒1 = 0.750under different CSs and 𝑇1 = 1.2, 𝑇2 = 2.5. 

 

Table 6. Estimations of SSRe for the real data example under different CSs. 
 

𝒏 𝒎 

     

𝑻𝟏 𝑻𝟐 CS 𝑴𝑳𝑬 𝑩𝒂𝒚𝒆𝒔𝑳𝒊𝒏𝒅𝒍𝒆𝒚 𝑩𝒂𝒚𝒆𝒔𝑴𝑯 𝑨𝒑𝑪𝑰𝑳𝒔 𝑪𝒓𝑰𝑳𝒔 

30 15 0.7 1.2 I 0.08432 0.06756 0.06443 0.35632 0.17853 

30 15 0.7 1,2 II 0.08105 0.06291 0.05842 0.35211 0.17688 

30 15 0.7 1.2 III 0.08511 0.06763 0.06452 0.35664 0.17859 

30 24 0.7 1.2 I 0.08216 0.06550 0.06220 0.35106 0.17676 

30 24 0.7 1.2 II 0.07764 0.06009 0.05508 0.34978 0.17523 

30 24 0.7 1.2 III 0.08212 0.06549 0.06217 0.35102 0.17650 

50 25 0.7 1.2 I 0.08121 0.06442 0.06237 0.35377 0.17642 

50 25 0.7 1.2 II 0.07872 0.05889 0.05604 0.35206 0.17613 

50 25 0.7 1.2 III 0.08127 0.06440 0.06240 0.35379 0.17650 

50 40 0.7 1.2 I 0.07574 0.06019 0.05739 0.33778 0.16884 

50 40 0.7 1.2 II 0.07043 0.05514 0.05110 0.33542 0.16607 

50 40 0.7 1.2 III 0.07569 0.06014 0.05735 0.33767 0.16881 

n  m  

     

1T  
2T  CS MLE  LindleyBayes  

MHBayes  ApCILs  CrILs  

30 15 0.7 1.2 I 0.07985 0.06012 0.05964 0.32743 0.17127 

30 15 0.7 1.2 II 0.07810 0.05886 0.05677 0.30622 0.16709 

30 15 0.7 1.2 III 0.07987 0.06010 0.06021 0.32843 0.17132 

30 24 0.7 1.2 I 0.07979 0.05881 0.05895 0.32356 0.17005 

30 24 0.7 1.2 II 0.07093 0.05800 0.05401 0.30216 0.16526 

30 24 0.7 1.2 III 0.07975 0.05884 0.05918 0.32489 0.17116 

50 25 0.7 1.2 I 0.07832 0.05831 0.05805 0.32105 0.16749 

50 25 0.7 1.2 II 0.07776 0.05726 0.05600 0.29978 0.16314 

50 25 0.7 1.2 III 0.07845 0.05836 0.05811 0.32102 0.16754 

50 40 0.7 1.2 I 0.07419 0.05733 0.05647 0.31807 0.16312 

50 40 0.7 1.2 II 0.07015 0.05189 0.05085 0.29465 0.15849 

50 40 0.7 1.2 III 0.07425 0.05742 0.05687 0.31820 0.16322 

SCs MLE MeHa LiA ApCILs CrILs 

SCI 0.62809 0.62722 0.62314 0.3672 0.2588 

SCII 0.62189 0.61988 0.61528 0.3517 0.2503 

SCIII 0.63763 0.63543 0.63107 0.3698 0.2625 
      


